NATIONAL CURRICULUM

The national

curriculum for
science aims to ensure that all pupils: develop scientific knowledge and conceptual understanding. Develop understanding of the nature, processes and methods of science through different types of enquiries that help them to answer scientific questions about the world around them. Are equipped with the scientific knowledge required to understand the uses and implications of science, today and for the future

EYFS

Key Stage 1:
Pupils should be taught:

* To experience and observe phenomena, looking more closely at the natural and humanly constructed world around them.
* They should begin to use simple scientific language to talk about what they have found out and communicate their ideas to a range of audiences in a variety of ways.
* Most of the learning about science should be done through the use of first-hand practical experiences, but there should also be some use of appropriate secondary sources, such as books, photographs and videos.

Key Stage 2:
Pupils should be taught:

* To broaden their scientific view of the world around them. They should do this through exploring, talking about, testing and developing ideas about everyday phenomena and the relationships between living things and familiar environments, and by beginning to develop their ideas about functions, relationships and interactions.
* Pupils should identify and discuss the uses of different everyday materials so that they become familiar with how some materials are used for more than one thing (metal can be used for coins, cans, cars and table legs; wood can be used for matches, floors, and telegraph poles) or different materials are used for the same thing.
* They should think about the properties of materials that make them suitable or unsuitable for particular purposes and they should be encouraged to think about unusual and creative uses for everyday materials.
* They should draw simple conclusions and use some scientific language, first, to talk about and, later, to write about what they have found out.
* Exploring and talking about their ideas; asking their own questions about scientific phenomena; and analysing functions, relationships and interactions more systematically. At upper key stage 2, Pupils should construct simple series circuits, trying different components, for example, bulbs, buzzers and motors, and including switches, and use their circuits to create simple devices.
* They should encounter more abstract ideas and begin to recognise how these ideas help them to understand and predict how the world operates. They should also begin to recognise that scientific ideas change and develop over time. Pupils should draw conclusions based on their data and observations, use evidence to justify their ideas, and use their scientific knowledge and understanding to explain their findings.

	To describe the basic structure of a variety of flowering plants, including trees.	suitable temperature).	and growth and how they vary from plant to plant. To understand pollination, seed formation and seed will have grown plants from seeds		grow new plants from cuttings
They will have observed plants and will know names such as leaf, flower, petal, etc.					
They will have walked in a woodland area ornoticed trees in Forest School					

				some materials can change state. To explore how materials change state. To measure the temperature at which materials change state. To know how to use equipment, including thermometers and data loggers to make measurements. To know about the water cycle.		
Evolution and Inheiritance						To know how the Earth and living things have changed over time. To know how fossils can be used to find out about the past. To understand how animals and plants are adapted to their environments. To link adaptation over time to evolution. To explain what evolution is.
Forces			To know about and describe how objects move on different surfaces. To know how some forces require contact but magnetic forces can act at a distance. and some do not, giving examples. To know about and explain how objects		To know what gravity is and its impact on our lives. To identify and know the effect of air resistance. To identify and know the effect of water resistance. To identify and know	

			attract or repel in relation to magnets and other objects. To predict whether objects will be magnetic and carry out an enquiry to test this out. To know how magnets work. To predict whether magnets will attract or repel and give a reason.		the effect of friction. To explain how levers, pulleys and gears allow a smaller force to have a greater effect	
Light and Sound EYFS To explore shadows. To explore rainbows. To describe what I see, hear and feel whilst outside. To listen to sounds outside and identify the source to make sounds to describe what I see, hear and feel whilst outside.			To know what dark is (the absence of light) and that light is needed in order to see. I know that light is reflected from a surface. To know and demonstrate how a shadow is formed and explore shadow size and explain the changes. To know the danger of direct sunlight and describe how to keep protected.	To know how sound is made associating some of them with vibrating. To know that vibrations from sounds travel through a medium to the ear how sound travels from a source to our ears. To know the correlation between pitch and the object producing a sound. To know the correlation between the volume of a sound and the strength of the vibrations that produced it. To know what happens to a sound as it travels away from its source.		To know how light appears to travel in straight lines. To know and demonstrate how we see objects. To know why shadows have the same shape as the object that casts them. To know how simple optical illusions work e.g. periscope, telescope, binoculars, mirror, magnifying glass etc.
WORKING SCIENTIFICALLY	Y1	Y2	Y3	Y4	Y5	Y6

		results and conclusions using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions identifying differences, similarities or changes related to simple scientific ideas and processes using straightforward scientific evidence to answer questions or to support their findings	reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions using results to draw simple conclusions, make predictions for new values, suggest improvements and raise further questions identifying differences, similarities or changes related to simple scientific ideas and processes using straightforward scientific evidence to answer questions or to support their findings.		displays and other presentations identifying scientific evidence that has been used to support or refute ideas or arguments
VOCAB	Y1-Y2	Y3			Y6
Working scientifically	experience observe changes patterns grouping sorting classifying compare identify (name) data measure record equipment questions test investigate explore magnifying glass / hand lens same different	develop enquiry practic comparative test relatid accurate thermometer data diagram key (iden chart results predictio similarity differenc information findings cr charact	al enquiry fair test nships conclusion data logger estimate ying) table chart bar explanation reason uestion evidence ia values properties stics	variables evid precision scatter graphs argum re	justify accuracy phs bar graphs line (science) causal nship

Animals including humans	names of common animals: fish, amphibians, reptiles, birds, mammals carnivores herbivores omnivores human body senses see hear feel smell taste habitat local environment pet wild animal insect minibeast food eat head neck body arms legs ears eyes nose mouth tongue hands feet fingers toes elbows knees hair teeth grow healthy offspring adults young water air survive exercise hygiene egg chick chicken caterpillar pupa moth butterfly tadpole frog frog spawn lamb sheep calf cow foal horse	nutrition diet skeleton muscles protection support movement bones skull shell digestive system stomach small intestine large intestine oesophagus types of teeth: molar, pre-molar, incisor, canine saliva	puberty gestation period circulatory system heart lungs blood vessels blood lifestyle disease water transportation nutrient transportation oxygen air breathing exercise diet drugs
Plants	plants wild plants garden plants evergreen trees deciduous trees common flowering plants flowers vegetables leaf/leaves flower blossom petal stem trunk branch root seed bulb bud growth grow habitat local environment leaf fall water light temperature healthy growth survive soil germinate stages of growth	air transport (water) life cycle pollination seed formation seed dispersal reproduce fertiliser functions nutrition	
Living things and their habitats	pond garden field park woodland sea shore river ocean forest rainforest stones rocks logs leaf litter habitat micro-habitat living dead not living alive healthy food food chain depend source of food shelter grow growth healthy	environment non-flowering plants ferns mosses flowering plants grasses vertebrate animals: fish, birds, mammals, amphibians, reptiles invertebrate animals: snails, worms, slugs, spiders, insects human impact - litter, deforestation, population increase, nature reserves	life cycles reproduction life processes sexual and asexual reproduction (plants) root cuttings classification microorganisms organisms evolution evolve adaptation variation inherit inheritance
Materials	everyday materials wood paper plastic metal glass water rock brick stone fabric material foil elastic dough rubber card cardboard clay object make/made hard/soft shiny/dull stretchy/stiff rough/smooth bendy/not bendy waterproof/not waterproof transparent/opaque absorbent/not absorbent squash twist bend stretch		properties hardness solubility transparency electrical conductivity thermal conductivity magnetism dissolve solution substance separating mixing filtering sieving reversible change burning rusting reactions irreversible change
Rocks and Soil		rock soil fossil organic matter grains crystals sedimentary rock	

States of Matter		solid liquid gas temperature heat (heating) cool (cooling) water cycle evaporation condensation melting freezing	
Earth and Space	spring summer autumn winter weather sun sunshine rain snow sleet ice frost fog cloud hot cold storm sky earth night day		Solar system, planets: Mercury, Venus, earth, Mars, Jupiter, Saturn, Neptune, Uranus moon stars spherical bodies rotation orbit satellite
Electricity		electricity simple circuit light bulb cell wire buzzer switch motor battery series circuit conductor insulator	voltage components symbols circuit diagram
Forces		forces push pull contact distance magnet bar magnet ring magnet horseshoe magnet attract repel poles (of magnets) magnetic materials move movement surfaces	friction levers pulleys gears springs gravity air resistance water resistance
Light and Sound		light dark (absence of light) reflect shadow opaque mirror reflective surface sound vibration vibrate pitch volume insulation	light sources periscope

